9beach
2. Ordinal Numbers

A solutions manual for Set Theory by Thomas Jech

2. Ordinal Numbers

2.1. The relation “\((P,<)\) is isomorphic to \((Q,<)\)” is an equivalence relation (on the class of all partially ordered sets).

Proof. \(\quad\)Let \((P, <)\), \((Q, <)\), and \((G, <)\) be partially ordered sets. \(P\) is isomorphic to \(P\) by \(f:x\mapsto x\). If \(P\) is isomorphic to \(Q\) by \(f\), then \(Q\) is isomorphic to \(P\) by \(f^{-1}\). If \(P\) is isomorphic to \(Q\) by \(f\) and \(Q\) is isomorphic to \(G\) by \(g\), then \(P\) is isomorphic to \(G\) by \(g\circ f\).\(\quad\square\)

2.2. \(\alpha\) is a limit ordinal if and only if \(\beta <\alpha\) implies \(\beta+1<\alpha\), for every \(\beta\).

Proof. \(\quad\)Suppose \(\beta+1\ge\alpha\). Since \(\beta <\alpha\), \(\alpha =\beta + 1\), thus \(\alpha\) is a successor ordinal; a contradiction. Conversely, suppose that \(\alpha\) is a successor ordinal. \(\alpha=\beta+1\) for some \(\beta<\alpha\), a contradiction.\(\quad\square\)

2.3. If a set \(X\) is inductive, then \(X\cap Ord\) is inductive. The set \(\mathbb{N} =\bigcap\{X : X\text{ is inductive}\}\) is the least limit ordinal \(\neq 0\).

Proof. \(\quad\)\(\emptyset\in X\cap Ord\). If \(x\in X\cap Ord\), then \(x + 1 = x\cup\{x\}\in X\cap Ord\). Therefore, \(X\cap Ord\) is inductive.
\(\quad\)By exercise 1.3, \(\mathbb{N}\) is transitive. Since \(\mathbb{N} \cap Ord=\mathbb{N}\), by exercise 1.7 and lemma 2.11, \(\mathbb{N}\) is well-ordered by \(\in\). Thus \(\mathbb{N}\) is an ordinal number. Moreover, if \(n\in\mathbb{N}\), then \(n + 1\in\mathbb{N}\). Therefore, \(\mathbb{N}\) is the the least limit ordinal \(\neq\emptyset\).\(\quad\square\)

2.4. (Without the Axiom of Infinity). Let \(\omega =\) least limit \(\alpha \neq 0\) if it exists, \(\omega = Ord\) otherwise. Prove that the following statements are equivalent:
 \(\quad\)(i) There exists an inductive set.
 \(\quad\)(ii) There exists an infinite set.
 \(\quad\)(iii) \(\omega\) is a set.
 \(\quad\)[For (ii) \(\to\) (iii), apply Replacement to the set of all finite subsets of \(X\).]

Proof. \(\quad\)Case (i)\(\implies\)(ii). By exercise 1.11, there exists an inductive T-infinite set \(\mathbb{N}\), and by exercise 1.12 and 1.13, \(\mathbb{N}\) is infinite.
 \(\quad\)Case (ii)\(\implies\)(iii). Let \(X\) be an infinite set and let \(Y =\{x\subset X : x\text{ is a finite set}\}\). \(Y\subset P(X)\) is a set, and since \(x\in Y\) is finite, there is the mapping \(f\) of \(Y\) into \(\omega\) given by \(x\mapsto n\) where \(x\) has \(n\) elements. Since \(X\) is infinite, if \(x\in Y\) has \(n\) elements, then there is \(y\in Y\) that has \(n+1\) elements, thus \(ran(f) =\omega\). Therefore, \(\omega\) is a set.
 \(\quad\)Case (iii)\(\implies\)(i). By definition, \(\emptyset\in\omega\) and if \(\alpha\in\omega\) then \(\alpha+1\in\omega\). Therefore, \(\omega\) is inductive.\(\quad\square\)

2.5. If \(W\) is a well-ordered set, then there exists no sequence \(\langle a_n : n\in\mathbb{N}\rangle\) in \(W\) such that \(a_0 >a_1 >a_2 >\ldots.\)

Proof. \(\quad\)Otherwise there is no least element.\(\quad\square\)

2.6. There are arbitrarily large limit ordinals; i.e., \(\forall\alpha\exists\beta >\alpha\) (\(\beta\) is a limit).
 \(\quad\)[Consider \(\lim_{n\to\omega}\alpha_n\), where \(\alpha_{n+1} = \alpha_n + 1\).]

Proof. \(\quad\)Given \(\alpha_0\in Ord\), define \(\alpha_{n+1} =\alpha_n+1\) and \(\beta=\lim_{n\to \omega}\alpha_n\), i.e., \(\beta=\bigcup\{\alpha_n:n<\omega\}=\text{sup } \{\alpha_n:n<\omega\}\). Since the union of ordinals is an ordinal, \(\beta\) is an ordinal. For each \(\gamma <\beta\), there is \(\alpha_n\) such that \(\alpha_n>\gamma\); otherwise \(\gamma\ge\text{sup } \{\alpha_n:n<\omega\}\), a contradiction. Thus \(\gamma+1<\alpha_n+1=\alpha_{n+1}<\beta\), and so \(\beta\) is a limit ordinal. Therefore, there are arbitrarily large limit ordinals.\(\quad\square\)

2.7. Every normal sequence \(\langle\gamma_\alpha :\alpha\in Ord\rangle\) has arbitrarily large fixed points, i.e., \(\alpha\) such that \(\gamma_\alpha =\alpha\).
 \(\quad\)[Let \(\alpha_{n+1}=\gamma_{\alpha_n}\), and \(\alpha=\lim_{n\to \omega}\alpha_n\).]

Proof. \(\quad\)Since \(\langle\gamma_\alpha :\alpha\in Ord\rangle\) is increasing, for \(\beta\in Ord\), there is \(m\in Ord\) such that \(\gamma_m>\beta\). Let \(\alpha_0=\gamma_m\) and \(\alpha_{n+1}=\gamma_{\alpha_n}\). \(\langle\alpha_n:n\in\omega\rangle\) is increasing, so we let \(\alpha=\lim_{n\to\omega}\alpha_n\); similarly to 2.6, \(\alpha\) is a limit ordinal. Hence we have that \(\alpha=\lim_{n\to\omega}\alpha_{n+1}= \lim_{n\to\omega}\gamma_{\alpha_{n}}=\lim_{\xi\to\alpha}\gamma_\xi= \gamma_{\lim_{\xi\to\alpha}\xi}=\gamma_\alpha\). Therefore, \(\gamma_\alpha =\alpha\).\(\quad\square\)

2.8. For all \(\alpha,\beta\) and \(\gamma\),
 \(\quad\)(i) \(\alpha\cdot(\beta+\gamma)=\alpha\cdot\beta+ \alpha\cdot\gamma\),
 \(\quad\)(ii) \(\alpha^{\beta+\gamma}=\alpha^{\beta}\cdot\alpha^{\gamma}\),
 \(\quad\)(iii) \((\alpha^{\beta})^{\gamma} =\alpha^{\beta\cdot\gamma}\).

Proof. \(\quad\)Case (i). We show by induction on \(\gamma\). \(\alpha\cdot(\beta+0)\) \(=\) \(\alpha\cdot\beta\) \(=\) \(\alpha\cdot\beta + \alpha\cdot 0\). \(\alpha\cdot(\beta+(\gamma+1))\) \(=\) \(\alpha\cdot((\beta+\gamma)+1)\) \(=\) \(\alpha\cdot(\beta+\gamma)+\alpha\) \(=\) \(\alpha\cdot\beta+ \alpha\cdot\gamma +\alpha\) \(=\) \(\alpha\cdot\beta+\alpha\cdot(\gamma+1)\). For each limit ordinal \(\gamma > 0\), \(\alpha\cdot(\beta+\gamma)\) \(=\) \(\alpha\cdot\lim_{\xi\to\gamma}(\beta+\xi)\) \(=\) \(\lim_{\xi\to\gamma}\alpha\cdot(\beta+\xi)\) \(=\) \(\lim_{\xi\to\gamma}(\alpha\cdot\beta+\alpha\cdot\xi)\) \(=\) \(\alpha\cdot\beta+\lim_{\xi\to\gamma}(\alpha\cdot\xi)\) \(=\) \(\alpha\cdot\beta+\alpha\cdot\lim_{\xi\to\gamma}\xi\) \(=\) \(\alpha\cdot\beta+\alpha\cdot\gamma\).
 \(\quad\)Case (ii) and (iii). Similarly to the previous.\(\quad\square\)

2.9. \(\quad\)(i) Show that \((\omega+1)\cdot 2\neq\omega\cdot 2+1\cdot 2\).
 \(\quad\)(ii) Show that \((\omega\cdot 2)^2\neq\omega^2\cdot 2^2\).

Proof. \(\quad\)Case (i). \((\omega+1)\cdot 2=\omega+1+\omega +1=\) \(\omega+\omega+1=\omega\cdot 2 + 1\) \(<\omega\cdot 2 + 2 =\omega\cdot 2 +1\cdot 2\)
 \(\quad\)Case (ii). \((\omega\cdot 2)^2=\omega\cdot 2\cdot\omega\cdot 2=\omega\cdot (2\cdot\omega)\cdot 2=\omega\cdot\omega\cdot 2\) \(<\omega\cdot\omega\cdot 4=\omega^2\cdot 2^2\)\(\quad\square\)

2.10. If \(\alpha<\beta\) then \(\alpha+\gamma\le\beta+\gamma\), \(\alpha \cdot\gamma\le\beta\cdot\gamma\), and \(\alpha^{\gamma}\le\beta^{\gamma}\).

Proof. \(\quad\)We show that if \(\alpha<\beta\) then \(\alpha+\gamma\le\beta+\gamma\) by induction on \(\gamma\).
\(\alpha+0\le\beta+0\). \(\alpha+\gamma+1\le\alpha+1+\gamma+1 \le\beta+\gamma+1\). Let a limit ordinal \(> 0\) be \(\gamma\). For each \(\xi<\gamma\), if \(\alpha +\xi <\beta +\xi\), then \(\text{sup }\{\alpha +\xi :\xi<\gamma\}\le\text{sup }\{\beta + \xi :\xi<\gamma\}\). Therefore, \(\alpha+\gamma\le\beta+\gamma\).
 \(\quad\)Similarly to the previous, \(\alpha \cdot\gamma\le\beta\cdot\gamma\), and \(\alpha^{\gamma}\le \beta^{\gamma}\).\(\quad\square\)

2.11. Find \(\alpha,\beta,\gamma\) such that
 \(\quad\)(i) \(\alpha <\beta\) and \(\alpha +\gamma =\beta +\gamma\),
 \(\quad\)(ii) \(\alpha <\beta\) and \(\alpha\cdot\gamma=\beta\cdot\gamma\),
 \(\quad\)(iii) \(\alpha <\beta\) and \(\alpha^{\gamma}=\beta^{\gamma}\).

Proof. \(\quad\)Case (i). \(0+\omega=1+\omega\)
 \(\quad\)Case (ii). \(1\cdot\omega=2\cdot\omega\)
 \(\quad\)Case (iii). \(2^{\omega}=3^{\omega}\)\(\quad\square\)

2.12. Let \(\varepsilon_0 =\lim_{n\to\omega}\alpha_n\) where \(\alpha_0 = \omega\) and \(\alpha_{n+1} =\omega^{\alpha_n}\) for all \(n\). Show that \(\varepsilon_0\) is the least ordinal \(\varepsilon\) such that \(\omega^{\varepsilon}=\varepsilon\).

Proof. \(\quad\)\(\varepsilon_0=\text{sup }\{\omega,\omega^\omega, \omega^{\omega^\omega},\ldots\}=\text{sup }\{\omega^\omega, \omega^{\omega^\omega},\omega^{\omega^{\omega^\omega}},\ldots\}\) \(= \omega^{\text{sup }\{\omega,\omega^\omega, \omega^{\omega^\omega},\ldots\}}\) \(=\omega^{\varepsilon_0}\).
 \(\quad\)Suppose that there is \(\varepsilon <\varepsilon_0\) such that \(\omega^{\varepsilon}=\varepsilon\). Since for every finite number \(a\), \(a\neq\omega^a\), \(\varepsilon\ge\omega\), thus there is the least \(n\) such that \(n>0\) and \(n\in\omega\) and \(\alpha_n > \varepsilon\), and so \(\alpha_n=\omega^{\alpha_{n-1}}>\varepsilon=\omega^\varepsilon\). But since \(\alpha_{n-1}<\varepsilon\), a contradiction.\(\quad\square\)

 \(\quad\)A limit ordinal \(\gamma > 0\) is called indecomposable if there exist no \(\alpha <\gamma\) and \(\beta <\gamma\) such that \(\alpha+\beta=\gamma\).

2.13. A limit ordinal \(\gamma > 0\) is indecomposable if and only if \(\alpha+\gamma =\gamma\) for all \(\alpha <\gamma\) if and only if \(\gamma=\omega^{\alpha}\) for some \(\alpha\).

Proof. \(\quad\)\(\gamma > 0\) is indecomposable if and only if \(\alpha+\beta<\gamma\) for all \(\alpha <\gamma\) and \(\beta <\gamma\); otherwise \(\alpha<\gamma<\alpha+\beta\), and so there is \(\delta\) such that \(\alpha+\delta=\gamma\) and \(\delta<\gamma\), a contradiction. Hence for all \(\alpha <\gamma\), \(\alpha+\gamma=\text{sup }\{\alpha+\xi :\xi < \gamma\}\le\gamma\), but we know that \(\text{sup }\{\alpha+\xi :\xi < \gamma\}\) \(\ge\) \(\text{sup }\{\xi :\xi <\gamma\}=\gamma\). Thus \(\alpha +\gamma=\gamma\). Conversely, if \(\alpha +\gamma =\gamma\) for all \(\alpha <\gamma\) then \(\text{sup }\{\alpha+\xi :\xi <\gamma\}\) \(=\) \(\gamma\). It follows that for all \(\alpha <\gamma\) and \(\beta <\gamma\), \(\alpha+\beta<\gamma\).
 \(\quad\)Let \(\gamma=\omega^{\beta_1}\cdot k_1 +\cdots+\omega^{\beta_n}\cdot k_n\) be Cantor’s normal form for some \(n\). If a limit ordinal \(\gamma\ne\omega^\alpha\) for all \(\alpha\), i.e., \(n>1\) or \(k_n>1\), then clearly not indecomposable, i.e., decomposable. Conversely, let \(\beta_1,\beta_2<\gamma=\omega^\alpha\) for all \(\alpha>0\). Considering Cantor’s normal forms of \(\beta_1\) and \(\beta_2\), there are \(\alpha'\) and \(k\) such that \(\alpha'<\alpha\) and \(k<\omega\) and \(\beta_1,\beta_2<\omega^{\alpha'}\cdot k\). Hence \(\beta_1 +\beta_2 < \omega^{\alpha'}\cdot (k+k) <\omega^\alpha=\gamma\).\(\quad\square\)

2.14. If \(E\) is a well-founded relation on \(P\), then there is no sequence \(\langle a_n : n\in\mathbb{N}\rangle\) in \(P\) such that \(a_1\,E\,a_0, \,a_2\,E\,a_1,\,a_3\,E\,a_2,\,\ldots\).

Proof. \(\quad\)Otherwise, \(\cdots\,E\,\,a_3\,E\,a_2\,E\,a_1\,E\, a_0\); there is no \(E\)-minimal elements.\(\quad\square\)

2.15. (Well-Founded Recursion). Let \(E\) be a well-founded relation on a set \(P\) and let \(G\) be a function. Then there is a function \(F\) such that for all \(x\in P, F(x)=G(x,F\upharpoonright\{y\in P:y\,E\,x\})\).

Proof. \(\quad\)We say that a set \(B\subset A\) is \(E\)-transitive in \(A\) if \(\{y\in A:y\,E\,x\}\subset B\) holds for all \(x\in B\). Let \(T=\{g:g\) is a function such that \(\text{dom}(g)\) is \(E\)-transitive in \(P\) and \(g(x)=G(x,g\upharpoonright x)\) for all \(x\in\text{ dom}(g)\}\). Since for every \(E\)-miminal element \(m\in P\), \(\{m\}\) is \(E\)-transitive and the function \(g\) of \(\{m\}\) is given by \(m\mapsto G(m, \emptyset)\), \(T\) is nonempty.
 \(\quad\)We claim that \(\bigcup T\) is a function. Suppose not. There is a \(E\)-minimal element \(m\) of the set \(\{x\in\text{dom}(g_1)\cap\text{dom}(g_2) : g_1(x)\neq g_2(x)\) for some \(g_1, g_2\in T\}\). Then \(g_1(m)\) \(=\) \(G(m, g_1\upharpoonright\{y\in\text{dom}(g_1): y\,E\,m\})\) \(=\) \(G(m, g_1\upharpoonright\{y\in\text{dom}(g_2): y\,E\,m\})\) \(=\) \(G(m, g_2\upharpoonright\{y\in\text{dom}(g_2): y\,E\,m\})\) \(=\) \(g_2(m)\), a contradiction. Similarly, dom(\(\bigcup T)=P\). Therefore, \(\bigcup T=F\).\(\quad\square\)