9beach
Introduction: 8. Cardinal Numbers

A solutions manual for Algebra by Thomas W. Hungerford

8. Cardinal Numbers

1. Let \(I_0=\emptyset\) and for each \(n\in\mathbb{N}^*\) let \(I_n =\{1,2,3,\ldots,n\}\).
 \(\quad\)(a) \(I_n\) is not equipollent to any of its proper subsets [Hint: induction.]
 \(\quad\)(b) \(I_m\) and \(I_n\) are equipollent if and only if \(m = n\).
 \(\quad\)(c) \(I_m\) is equipollent to a subset of \(I_n\) but \(I_n\) is not equipollent to any subset of \(I_m\) if and only if \(m<n\).

Proof. \(\quad\)(a) \(I_0\) is not equipollent to any of its proper subsets. Suppose that \(n+1>0\) be the least number such that \(I_{n+1}\) is equipollent to some of its proper subsets. Then there is a bijection \(f\) of \(S\subsetneq I_{n+1}\) onto \(I_{n+1}\) where \(n+1\notin S\). Let \(A=S\smallsetminus\{f^{-1}(n+1)\}\) and \(B=I_{n+1}\smallsetminus\{n+1\}\). \(B\) is nonempty since \(I_{n+1}\) has a proper subset. \(f\upharpoonright A\) is a bijection of \(A\subsetneq I_n\) onto \(I_{n}\). A contradiction.
 \(\quad\)(b) If \(m=n\), then \(I_m\) and \(I_n\) are equipollent. If \(n\ne m\), then since one is a proper subset of the other, \(I_m\) and \(I_n\) are not equipollent.
 \(\quad\)(c) If \(m<n\), then \(I_m\) is equipollent to \(I_m\) that is a subset of \(I_n\), and since any subset of \(I_m\) is a subset of \(I_n\), \(I_n\) is not equipollent to any of them. Conversely, if \(I_m\) is equipollent to a subset of \(I_n\), then \(m\le n\), and if \(I_n\) is not equipollent to any subset of \(I_m\), then \(n>m\). Thus \(m<n\).\(\quad\square\)

2. \(\quad\)(a) Every infinite set is equipollent to one of its proper subsets.
 \(\quad\)(b) A set is finite if and only if it is not equipollent to one of its proper subsets [see Exercise 1].

Proof. \(\quad\)(a) By Theorem 8.8, every infinite set has a denumerable subset, Thus for a infinite set \(A\), there is a denumerable \(S\subset A\) and a finite \(T\subsetneq S\). Thus \(|A|=|S|\cup|A\smallsetminus S|=|S\smallsetminus T|\cup|A\smallsetminus S|=|(S\smallsetminus T)\cup(A\smallsetminus S)|\) where \((S\smallsetminus T)\cup(A\smallsetminus S)\subsetneq A\).
 \(\quad\)(b) If a set is finite, then the set is not equipollent to one of its proper subsets. Conversely, if a set is infinite, then the set is equipollent to one of its proper subsets.\(\quad\square\)

3. \(\quad\)(a) \(\mathbb{Z}\) is a denumerable set.
 \(\quad\)(b) The set \(\mathbb{Q}\) of rational numbers is denumerable. [Hint: show that \(|\mathbb{Z}|\le |\mathbb{Q}|\le |\mathbb{Z}\times \mathbb{Z}| = |\mathbb{Z}|\).]

Proof. \(\quad\)(a) \(|\mathbb{N}|\le|\mathbb{Z}|\le 2\cdot |\mathbb{N}|=|\mathbb{N}|\). Therefore, \(|\mathbb{Z}|=|\mathbb{N}|\).
 \(\quad\)(b) Therefore, \(|\mathbb{Q}|=|\mathbb{Z}|= |\mathbb{N}|\).\(\quad\square\)

4. If \(A,A',B,B'\) are sets such that \(|A| = |A'|\) and \(|B| = |B'|\), then \(|A\times B| = |A'\times B'|\). If in addition \(A\cap B =\emptyset = A'\cap B'\), then \(|A\cup B| = |A'\cup B'|\). Therefore multiplication and addition of cardinals is well-defined.

Proof. \(\quad\)\(|A\times B|=|A|\times|B|=|A'|\times|B'|=|A'\times B'|\). \(|A\cup B|=|A|\cup|B|=|A'|\cup|B'|=|A'\cup B'|\).\(\quad\square\)

5. For all cardinal numbers \(\alpha,\beta,\gamma\)
 \(\quad\)(a) \(\alpha +\beta =\beta +\alpha\) and \(\alpha\beta =\beta\alpha\) (commutative laws).
 \(\quad\)(b) \((\alpha +\beta )+\gamma =\alpha +(\beta +\gamma )\) and \((\alpha\beta )\gamma =\alpha (\beta\gamma )\) (associative laws).
 \(\quad\)(c) \(\alpha (\beta +\gamma )=\alpha\beta +\alpha\gamma\) and \((\alpha +\beta )\gamma =\alpha\gamma +\beta\gamma\) (distributive laws).
 \(\quad\)(d) \(\alpha +0=\alpha\) and \(\alpha 1=\alpha\).
 \(\quad\)(e) If \(\alpha\ne 0\), then there is no \(\beta\) such that \(\alpha +\beta =0\) and if \(\alpha\ne 1\), then there is no \(\beta\) such that \(\alpha\beta = 1\). Therefore subtraction and division of cardinal numbers cannot be defined.

Proof. \(\quad\)(a) Let \(A\) and \(B\) be sets. \(A\cup B=B\cup A\). There is a one-to-one mapping of \(A\times B\) onto \(B\times A\) given by \((a,b)\mapsto(b,a)\).
 \(\quad\)(b) Let \(A\), \(B\), and \(C\) be sets. \((A\cup B)\cup C=A\cup(B\cup C)\), and \((A\times B)\times C=A\times(B\times C)\).
 \(\quad\)(c) Let \(A\), \(B\), and \(C\) be sets. \(A\times (B\cup C)=A\times B\cup A\times C\).
 \(\quad\)(d) Let \(A\) and \(\{a\}\) be sets. \(A\cup\emptyset=A\). There is a one-to-one mapping of \(A\) onto \(A\times \{a\}\) given by \(x\mapsto(x,a)\).
 \(\quad\)(e) Let \(A\) and \(B\) be sets. If \(A\) is nonempty, then \(A\cup B\) is nonempty. If \(A\) or \(B\) is empty, then \(A\times B\) is empty. Otherwise, suppose that \(\{a,b\}\subset A\) and \(\{c\}\subset B\). Then \(\{(a,c), (b,c)\}\subset A\times B\). Thus \(|A\times B|\neq 1\).\(\quad\square\)

6. Let \(I_n\) be as in Exercise 1. If \(A\sim I_m\) and \(B\sim I_n\) and \(A\cap B=\emptyset\), then \((A\cup B)\sim I_{m+n}\) and \(A\times B\sim I_{mn}\). Thus if we identify \(|A|\) with \(m\) and \(|B|\) with \(n\), then \(|A| + |B| = m + n\) and \(|A||B| = mn\).

Proof. \(\quad\)Let \(f:A\to I_m\) and \(g:B\to I_n\) be bijective. There is a bijection of \(A\cup B\) onto \(I_{m+n}\) given by \(x\mapsto f(x)\) if \(x\in A\); otherwise \(x\mapsto g(x)+m\), and also there is a bijection of \(A\times B\) onto \(I_{mn}\) given by \((x,y)\mapsto nf(x) - n + g(y)\).\(\quad\square\)

7. If \(A\sim A', B\sim B'\), and \(f: A\to B\) is injective, then there is an injective map \(A'\to B'\). Therefore the relation \(\le\) on cardinal numbers is well defined.

Proof. \(\quad\)Let \(g:A\to A'\) and \(h:B\to B'\) be bijective. There is an injective map \(h\circ f\circ g^{-1}:A'\to B'\).\(\quad\square\)

8. An infinite subset of a denumerable set is denumerable.

Proof. \(\quad\)Let \(A\) be an infinite subset of a denumerable set. \(|A|\le \aleph_0\). By Theorem 8.8, every infinite set has a denumerable subset, thus \(|A|\ge \aleph_0\). Therefore, \(|A=\aleph_0|\).\(\quad\square\)

9. The infinite set of real numbers \(R\) is not denumerable (that is \(\aleph_0 < |R|\)). [Hint: It suffices to show that the open interval \((0, 1)\) is not denumerable by Exercise 8. You may assume each real number can be written as an infinite decimal. If \((0, 1)\) is denumerable there is a bijection \(f :\mathbb{N}^\ast\to (0, 1)\). Construct an infinite decimal (real number) \(.a_1 a_2\cdots\) in \((0, 1)\) such that \(a_n\) is not the n th digit in the decimal expansion of \(f(n)\). This number cannot be in \(\text{Im }f\).]

Proof. \(\quad\)Let us assume that the set \(\mathbb{R}\) of all reals is denumerable, and let \(c_0,c_1,\ldots,c_n,\ldots,n \in \mathbb{N}\) be an enumeration of \(\mathbb{R}\). \[ \begin{aligned} c_0=0.c_0^0 c_1^0 c_2^0 c_3^0 \cdots\\ c_n=0.c_0^n c_1^n c_2^n c_3^n \cdots\\ \end{aligned} \] We shall find a real number different from each \(c_n\).
 \(\quad\)Let \(f:n\mapsto\) the least element of \(\{x\in \mathbb{N}: 0\le x\le 9, x\) is not \(c_n^n\}\). \(0.f(0)f(1)f(2)f(3)\cdots\notin \mathbb{R}\). A contradiction.\(\quad\square\)

10. If \(\alpha ,\beta\) are cardinals, define \(\alpha^\beta\) to be the cardinal number of the set of all functions \(B\to A\), where \(A, B\) are sets such that \(|A|=\alpha,|B|=\beta\).
 \(\quad\)(a) \(\alpha^\beta\) is independent of the choice of \(A, B\).
 \(\quad\)(b) \(\alpha^{\beta+\gamma} = (\alpha^\beta )(\alpha^\gamma)\); \((\alpha\beta)^\gamma = (\alpha^\gamma )(\beta^\gamma )\); \(\alpha^{\beta\gamma}= (\alpha^\beta)^\gamma\).
 \(\quad\)(c) If \(\alpha\le\beta\), then \(\alpha^\gamma\le\beta^\gamma\).
 \(\quad\)(d) If \(\alpha,\beta\) are finite with \(\alpha >1,\beta>1\) and \(\gamma\) is infinite, then \(\alpha^\gamma =\beta^\gamma\).
 \(\quad\)(e) For every finite cardinal \(n\), \(\alpha^n =\alpha \alpha\cdots\alpha\) (\(n\) factors). Hence \(\alpha ^n =\alpha\) if \(\alpha\) is infinite.
 \(\quad\)(f) If \(P(A)\) is the power set of a set \(A\), then \(|P(A)|=2^{|A|}\).

Proof. \(\quad\)(a) Let \(A, B, C\), and \(D\) be the sets such that \(A\sim C\) and \(B\sim D\), and let \(f:A\to C\) and \(g:B\to D\) be bijective. For each \(h:B\to A\) in \(A^B\), there is a unique function \(k:D\to A\) in \(A^D\) given by \(x\mapsto f\circ g^{-1}(x)\). Since \(g^{-1}\) is bijective, this mapping is a bijection of \(A^B\) onto \(A^D\), and it can be easily seen that there is a bijection of each of \(A^B,A^{D}, {C}^B,{C}^{D}\) onto each of \(A^B,A^{D},{C}^B,{C}^{D}\).
 \(\quad\)(b) There is a bijection of \(A^B\times A^C\) onto \(A^{B\cup C}\) given by \((f, g)\mapsto f\cup g\). There is a bijection of \(A^C\times B^C\) onto \((A\times B)^C\) given by \((f, g)\mapsto h\) where \((f(c), g(c))=h(c)\) for all \(c\in C\). There is a bijection of \(A^{B\times C}\) onto \((A^B)^C\) given by \(f\mapsto g\) where \(g(c)=h\) such that \(h\in A^B\) and \(h(b)=f(b,c)\) for all \(a\in A, b\in B, c\in C\).
 \(\quad\)(c) Let \(A, B\), and \(C\) be sets such that \(A\subset B\). If \(f\in A^C\), then \(f\in B^C\). If \(g\in B^C\) and \(\text{Im }g\cap (B-A)\neq\emptyset\), then \(g\notin A^C\).
 \(\quad\)(d) \(\alpha^\gamma\le(2^{\aleph_0})^\gamma= 2^{\aleph_0\gamma}=2^\gamma\). Similarly, \(\beta^\gamma=2^\gamma =\alpha^\gamma\).
 \(\quad\)(e) Clear.
 \(\quad\)(f) For every \(X\subset A\), let \(\chi_X\) be the function given by \(x\mapsto 1\) if \(x\in X\); otherwise \(x\mapsto0\). The mapping of \(P(A)\) onto \(\{0,1\}^A\) given by \(S\mapsto \chi_S\) is bijective.\(\quad\square\)

11. If \(I\) is an infinite set, and for each \(i\in I\), \(A_i\) is a finite set, then \(|\bigcup_{i\in I}A_i|\le|I|\).

Proof. \(\quad\)\(|\bigcup_{i\in I}A_i|\le\aleph_0|I|= |I|\).\(\quad\square\)

12. Let \(\alpha\) be a fixed cardinal number and suppose that for every \(i\in I\), \(A_i\) is a set with \(|A_i|=\alpha\). Then \(|\bigcup_{i\in I}A_i|\le|I|\alpha\).

Proof. \(\quad\)There is a injection of \(\bigcup_{i\in I}A_i\) onto \(I\times A_{i\in I}\) given by \(x_i\mapsto (i,x_i)\).\(\quad\square\)